自2019年底Covid-19出现以来,Covid-19已成为人工智能(AI)社区的积极研究主题。最有趣的AI主题之一是COVID-19对医学成像的分析。 CT扫描成像是有关该疾病的最有用的工具。这项工作是第二次COV19D竞赛的一部分,在其中设定了两个挑战:COVID-19检测和COVID-19的严重性检测。对于从CT扫描的COVID-19检测,我们提出了具有Densenet-161模型的2D卷积块的集合。在这里,每个具有Densenet-161体系结构的2D卷积块是分别训练的,在测试阶段,集合模型基于其概率的平均值。另一方面,我们提出了一个卷积层的集合,该集合具有用于COVID-19的严重程度检测的成立模型。除了卷积层外,还使用了三个成立变体,即Inception-V3,Inception-V4和Inception-Resnet。我们提出的方法在第二COV19D竞赛的验证数据中的表现优于基线方法,分别为COVID-19检测和COVID-19的严重性检测分别为11%和16%。
translated by 谷歌翻译
运营商网络已成为有希望的深度学习工具,用于近似偏微分方程(PDE)的解决方案。这些网络绘制了描述材料属性,迫使函数和边界数据的输入函数到PDE解决方案。这项工作描述了一种针对操作员网络的新体系结构,该架构模仿了从问题的变异公式或弱公式中获得的数值解决方案的形式。这些想法在通用椭圆的PDE中的应用导致变异模拟操作员网络(Varmion)。像常规的深层操作员网络(DeepOnet)一样,Varmion也由一个子网络组成,该子网络构建了输出的基础函数,另一个构造了这些基础函数系数的基本功能。但是,与deponet相反,在Varmion中,这些网络的体系结构是精确确定的。对Varmion解决方案中误差的分析表明,它包含训练数据中的误差,训练错误,抽样输入中的正交误差和输出功能的贡献,以及测量测试输入功能之间距离的“覆盖错误”以及培训数据集中最近的功能。这也取决于确切网络及其varmion近似的稳定性常数。 Varmion在规范椭圆形PDE中的应用表明,对于大约相同数量的网络参数,平均而言,Varmion的误差比标准DeepOnet较小。此外,其性能对于输入函数的变化,用于采样输入和输出功能的技术,用于构建基本函数的技术以及输入函数的数量更为强大。
translated by 谷歌翻译